
LA-UR-21-24774
Approved for public release; distribution is unlimited.

Title: LUNA Condition-Based Monitoring Update: Mahalanobis Distance for
Excess Load and External Leak Cases

Author(s): Green, Andre Walter

Intended for: Progress report to sponsor.

Issued: 2021-05-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

LUNA Condition-Based Monitoring Update:
Mahalanobis Distance for Excess Load and

External Leak Cases
Presented 5/11/2021

Andre’ Green

Mahalanobis Distance

Mahalanobis distance is the distance between a point and a distribution.
The distribution is represented by several sample points, which are stacked into a
matrix.

mahalanobis_distance (point, matrix) =
(point – mean(matrix)) * inv(cov(matrix)) * (point – mean(matrix))^T

‘point’ is an N-element vector.
‘matrix’ is an [M x N] matrix.

‘mean(x)’ returns the column-means of a matrix x.
‘inv(x)’ returns x’s inverse matrix.
‘cov(x)’ returns x’s covariance matrix.

Mahalanobis Classifier

A binary Mahalanobis classifier is straightforward to
make, if you know how to calculate the mahalanobis
distance.

mahalanobis_classify(point, matrix, threshold) =
mahalanobis_distance(point, matrix) > threshold

All Data

Training & Testing Final Validation

Mahalanobis Training Data

Mahalanobis Threshold-
Selection Data

Undamaged Data Damaged Data

Testing

Stratified 9-Fold
Cross-Validation

50% 50%

90% 5% 5%

10%90%

Mahalanobis Classifier

Mahalanobis Matrix

Mahalanobis
Classifier Results

This is the complete
process/flowchart for how the
data is divided up for use in the
mahalanobis classifier.

Steps detailing the process are
given in the following slides.

All Data

Training & Testing Final Validation

Mahalanobis Training Data

Mahalanobis Threshold-
Selection Data

Undamaged Data Damaged Data

Testing

Stratified 9-Fold
Cross-Validation

50% 50%

90% 5% 5%

10%90%

Mahalanobis Classifier

Mahalanobis Matrix

Mahalanobis
Classifier Results

First, separate the data into a training and
testing set (90%) and a final validation set
(10%).

The validation set is unused, for now.
Only after optimizing all the hyper-
parameters and trying different techniques
and studying the training & testing data set
should it be used.

All Data

Training & Testing Final Validation

Mahalanobis Training Data

Mahalanobis Threshold-
Selection Data

Undamaged Data Damaged Data

Testing

Stratified 9-Fold
Cross-Validation

50% 50%

90% 5% 5%

10%90%

Mahalanobis Classifier

Mahalanobis Matrix

Mahalanobis
Classifier Results

Second, divide the training and testing set by
the label type (damaged or undamaged).

The undamaged data is then further sub-
divided by 9-fold cross validation. 9 folds are
used because the testing sets will comprise
1/9th of 90% (10%) which is the size of the
final validation set.

All Data

Training & Testing Final Validation

Mahalanobis Training Data

Mahalanobis Threshold-
Selection Data

Undamaged Data Damaged Data

Testing

Stratified 9-Fold
Cross-Validation

50% 50%

90% 5% 5%

10%90%

Mahalanobis Classifier

Mahalanobis Matrix

Mahalanobis
Classifier Results

The ‘training’ portion of the undamaged data
from the 9-fold cross validation should be
used to construct the mahalanobis covariance
matrix and mean vector.

The remaining 10% is divided in half, with 5%
used for the selection of the distance
threshold, and the other 5% for testing the
Mahalanobis classifier.

The damaged data is not used in the
construction of the mahalanobis matrix.

Half of the damaged data is used for
constructing the ROC curve using the
mahalanobis distance metric, from
which the ideal threshold will be
selected.

Once that threshold is selected (which
defines the mahalanobis classifier), the
mahalanobis classifier can be tested with
the remaining half of the damaged data
(and the 5% of the undamaged testing
data mentioned previously).

Pressure Difference
Sum

Random
 (to assist in visualization)

Pressure Difference
Sum

Variance of Pressure Gauge 1

Performance using Varying # of Dimensions
In this case, the performance becomes very good with
sufficiently many dimensions. The reason for the giant leap in
the jump from 2 to 3 dimensions is because the line of points (at
Variance(PG1) = 0) become spread out across the Variance(PG2)
Pressure Diff. Sum plane.

Theoretically, you can combine sensors to project into 2D
dimensions that are about as good for separating the data, but
you still physically need to capture this sensor data before doing
the dimension reduction on the data.

1 Dimension

2 Dimensions
3 Dimensions

Eload Performance with Varying # of
Dimensions

The Board401 (0K Actuations) and the higher actuation datasets (28K, 50K,
etc.) were used for these figures. Eload severity below 650 was considered
undamaged, and equal or above 650 damaged.

Just [000] as undamaged
Fold 0: Test acc: 100.000% | Train acc: 100.000%
Fold 1: Test acc: 99.938% | Train acc: 100.000%
Fold 2: Test acc: 100.000% | Train acc: 100.000%
Fold 3: Test acc: 100.000% | Train acc: 100.000%
Fold 4: Test acc: 100.000% | Train acc: 100.000%
Fold 5: Test acc: 100.000% | Train acc: 100.000%
Fold 6: Test acc: 99.938% | Train acc: 100.000%
Fold 7: Test acc: 99.938% | Train acc: 99.815%
Fold 8: Test acc: 99.877% | Train acc: 99.938%

Using just [000] works well perhaps
because there’s not much overlap
between its and those of the other
severity classes.

Likewise, using [000-650] works well too,
because the block of intermingling points
[300-650] isn’t being split across the
undamaged and damaged classes.

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Green: Training Undamaged data
Black: Testing Undamaged data
Red: Testing Damaged data

Using [000 – 375] as undamaged
Fold 0: Test acc: 72.866% | Train acc: 70.092%
Fold 1: Test acc: 73.143% | Train acc: 74.161%
Fold 2: Test acc: 79.654% | Train acc: 83.927%
Fold 3: Test acc: 77.721% | Train acc: 77.823%
Fold 4: Test acc: 78.433% | Train acc: 78.128%
Fold 5: Test acc: 71.617% | Train acc: 75.178%
Fold 6: Test acc: 81.994% | Train acc: 80.875%
Fold 7: Test acc: 72.431% | Train acc: 75.381%
Fold 8: Test acc: 79.145% | Train acc: 78.128%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Undamaged and damaged points are
intermingling because each severity in
here is measured at multiple points in
time after substantially different
numbers of actuation, and the
variation in behavior over actuation is
enough to make a fuzzy border
between damage severities.

Using [000 – 480] as undamaged
Fold 0: Test acc: 84.746% | Train acc: 85.978%
Fold 1: Test acc: 86.133% | Train acc: 87.827%
Fold 2: Test acc: 88.290% | Train acc: 86.595%
Fold 3: Test acc: 81.510% | Train acc: 83.051%
Fold 4: Test acc: 89.368% | Train acc: 90.139%
Fold 5: Test acc: 76.733% | Train acc: 79.199%
Fold 6: Test acc: 88.444% | Train acc: 88.272%
Fold 7: Test acc: 83.359% | Train acc: 89.198%
Fold 8: Test acc: 85.670% | Train acc: 87.346%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Using [000 – 650] as undamaged
Fold 0: Test acc: 99.381% | Train acc: 99.068%
Fold 1: Test acc: 99.381% | Train acc: 99.379%
Fold 2: Test acc: 97.833% | Train acc: 98.447%
Fold 3: Test acc: 98.447% | Train acc: 99.379%
Fold 4: Test acc: 99.068% | Train acc: 97.516%
Fold 5: Test acc: 100.000% | Train acc: 99.689%
Fold 6: Test acc: 98.758% | Train acc: 98.758%
Fold 7: Test acc: 99.379% | Train acc: 99.379%
Fold 8: Test acc: 97.205% | Train acc: 96.894%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Accuracy for Each Fold [Using separate train/test for ROC threshold selection]

Fold 0: Test acc: 85.897% | Train acc: 96.154%
Fold 1: Test acc: 79.487% | Train acc: 87.179%
Fold 2: Test acc: 73.077% | Train acc: 82.051%
Fold 3: Test acc: 88.462% | Train acc: 96.104%
Fold 4: Test acc: 75.641% | Train acc: 83.117%
Fold 5: Test acc: 89.744% | Train acc: 88.312%
Fold 6: Test acc: 89.744% | Train acc: 92.208%
Fold 7: Test acc: 88.462% | Train acc: 85.714%
Fold 8: Test acc: 67.949% | Train acc: 72.727%

Mahalanobis on ELeak Data
Summary
Accuracy is not great [68% - 89%]
using Mahalanobis distance over
the ELeak data.

Here Eleak 005, 010, 020, and 050
were considered undamaged, and
Eleak 100 & 150 damage.

However, it looks like the larger
line-cluster on the left of the 2D
PCA projection scatterplot is
much better separated than the
line-cluster on the right.

They may need to be separated
and treated differently (e.g. each
given their own PCA reduction).

Mahalanobis on ELeak Data

Rotation A Accuracy
[Rot. A is > median(angle)]

Fold 0: Test acc: 94.737% | Train acc: 94.737%
Fold 1: Test acc: 78.947% | Train acc: 97.368%
Fold 2: Test acc: 86.842% | Train acc: 89.474%
Fold 3: Test acc: 92.105% | Train acc: 89.474%
Fold 4: Test acc: 76.316% | Train acc: 81.579%
Fold 5: Test acc: 94.737% | Train acc: 97.368%
Fold 6: Test acc: 94.737% | Train acc: 100.000%
Fold 7: Test acc: 92.105% | Train acc: 89.474%
Fold 8: Test acc: 89.474% | Train acc: 89.189%

Rotation B Accuracy
[Rot. B is <= median(angle)]

Fold 0: Test acc: 90.000% | Train acc: 87.500%
Fold 1: Test acc: 82.500% | Train acc: 85.000%
Fold 2: Test acc: 90.000% | Train acc: 87.500%
Fold 3: Test acc: 95.000% | Train acc: 90.000%
Fold 4: Test acc: 87.500% | Train acc: 97.436%
Fold 5: Test acc: 97.500% | Train acc: 92.308%
Fold 6: Test acc: 90.000% | Train acc: 94.872%
Fold 7: Test acc: 90.000% | Train acc: 94.872%
Fold 8: Test acc: 97.500% | Train acc: 87.179%

Low: 76%
High: 94%

Low: 82%
High: 97%

The distribution of the points in the PCA-reduced spaces are very different – suggesting
there’s a definite difference in how Eleak manifests in the clockwise vs. counter-
clockwise cases, besides the sign/value of the angle.

LDA Dimension-Reduction on ELeak Data

The purple and brown clusters (Eleak 100 and Eleak 150 respectively) are the damaged cases – the others
are undamaged. In both 3D representations, the damaged and undamaged clusters are visually separable
by a plane. This means that the classes of data are (mostly) linearly separable.

However, each LDA-found cluster still contains some outliers from clusters of another class (e.g. some
blue points [Eleak 005] appear in the brown cluster [Eleak 150]).

Data Sphering

Above: Rotation B ELeak data down-projected into
the top 3 whitened principal component directions,
with the unit sphere centered at the mean of the
undamaged data. Damaged points [>=100] are in
red, undamaged [<100] in black.

The data is not Gaussian-distributed, nor spherical
after the whitening PCA transformation.

The fact that each cluster is a line [1D] in 3D space
suggests the difference between the undamaged
groups is overpowering the difference within the
groups in 2 of the 3 dimensions.

Non-Gaussian Data
The undamaged data is not spherical after transformation.
This is because:

1. Each severity has a different mean
2. The clockwise/counter-clockwise samples have different means
3. There are strong outliers (potentially samples from previous or following severity)

Fitting only to Non-Outliers
Left: Rot. B Eleak 005 data using Ali’s features & down-projecting to 3D using whitened PCA.
Right: Rot. B Eleak 005 data using Ali’s features & down-projecting to 3D using whitened PCA,
but fitting the PCA transformation only to non-outlier points. An sklearn isolation forest (default
settings) was used for outlier detection.

By removing non-outlier points prior to fitting the whitening PCA transformation, the
resultant transformation better spheres the data.

The outlier points are still plotted: a red dot can be seen on the left side of the graph.
However, the other outliers are so far from the mean under the new transformation
that they don’t appear on the graph.

ELeak Rot. B
[Projected via 3D Whitened PCA]

Data Sphering
Whitening PCA Projection Whitening PCA Projection Fit only on non-outliers

The more spread out the points are within the sphere, the better.
By contrast, a line/plane inside the sphere indicates just a few points are strongly influencing PCA’s choice of a particular dimension.

Multiple Mahalanobis Classifiers
Possible solution
Make a classifier for each severity case, then grouping classifiers
according to their over-arching category (e.g. damaged/undamaged)

An ellipse is fit to each undamaged class (using isolation forest + whitening PCA), and then a convex hull is formed
encapsulating all the ellipses. The size of the ellipses (i.e. the Mahalanobis distance from the center of each class) could be
optimized with ROCs.

The graphics above uses a size of 5 for all the ellipses, and uses Eleak cases <100 for undamaged, and >=100 for damage.
Rotation B (angle <= median) is used for the left figure, and Rotation A (angle > median) is used for the figure on the right.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

